Friday, June 9, 2017

Deep Learning ND 4, Generative Adversarial Networks


1 GAN

Instructor: Ian Goodfellow
stackgan model: takes a textual description, then generate photos matching the description. GAN draws a sample from the probability distribution over all hypothetical images matching that description.
iGan, developed by Berkeley and Adobe.
cat, cartoon, image translation, simulation. Most of the applications of GANs have probably not invented yet.
how GANs work? Game theory between counterfeit maker and police. The generator and the discriminator are in a competition with each other. Saddle point is where equilibrium achieves.

4 Hyperparameters

Yoshua Bengio: Learning rate is the single most important hyper parameter and one should always make sure that has been tuned.
Good start point: 0.01
Exponential Decay in TensorFlow.
minibatch is something between online(stochastic) training and batch training.
32 to 256 is good candidates. too small will train too slow, too large will require more memory.
number of iteration. A technique is called early stopping. TensorFlow provides SessionRunHooks (previously was ValidationMonitor)
number of hidden layers. The 1st hidden layer usually has larger number of nodes than input. 3 hidden units are typically good enough unless CNN is used.
RNN architecture: vanilla RNN cell, LSTM cell, GRU (Gated recurrent unit) cell. Their comparison is still in hot debate. Typical embedding size are 50-200.
more about hyperparameter:
More specialized sources:

projects

  • gan_mnist
  • dcgan_svhn
  • face-generation
  • semi_supervised

notes:

A simplified model description is as below:
Smiley face
However, it is somewhat misleading. The tensorboard is better at articulate the complicated relationship:
Smiley face
The key point is there are 2 feedback loops. Both give the generator contradicting signal. minimize(g_loss) is trying to make a fake photo as real as possible, so the output logits will be one. One the other hand, minimize(d_loss) is trying to make fake photo stay fake (logits be 0) and real photo stay real (logits be 1).
Put in another word, g_loss gives 100% feedback to the generator, d_loss gives 50% feedback to generator because only half of the loss is from the generator.

No comments:

Post a Comment

Note: Only a member of this blog may post a comment.